Workshop sheds light on important statistical advances for the biopharma industry
General impression
Statistical science is being leveraged more frequently during interdisciplinary collaboration, including the use of AI/ML that informs data-driven decision-making in the biopharmaceutical industry.
- The FDA paper “Artificial Intelligence & Medical Products” exemplifies how the different centers at the US Food and Drug Administration (FDA) work together to explore the development and use of AI across the medical product life cycle.2
- The theme of the RISW conference, “Future in Statistics: Collaboration and Innovation in the AI/ML Era”, is an indicator of the new trend of integrating statistics with AI. That has been echoed at other prominent conferences such as the 2025 Joint Statistical Meetings, themed “statistics, data science, and AI enriching society”3, and is expected to be top of mind at the 2026 ENAR Biometrics Meeting with the theme of “The role of statistics in an AI-augmented world."4
RISW key takeaways
Borrowing information from external controls, such as natural history or real-world data (RWD), could potentially reduce the need for large control groups, especially in rare diseases or when a placebo arm presents ethical concerns. Proper statistical approaches make single-arm trial design possible and feasible. In addition, statistical frameworks combining machine learning and causal inference can learn from external information while addressing confounding and bias properly. Such approaches have shown promise in clinical trials to estimate treatment effect in a principled, data-adaptive way. As a result, a smaller trial is possible given the same statistical power.
Often such strategies are centered around assessing heterogeneous treatment effect and identifying patients more likely to benefit from specific treatments (e.g., treatment-responsive subgroups). The potential outcome framework, a core concept in causal inference, is increasingly integrated into causal ML to discover patterns in clinical trial data and identify patient subgroups. In the context of biomarkers, this could lead to co-development of companion diagnostics and important statistical and design considerations in studies such as bridging studies.
Workshop conclusions
About the authors:
Lira Pi is Associate Director, Statistics at Cencora. She is a statistical methodologist who leads the development and application of novel statistical approaches, such as AI/ML and Bayesian methods, throughout both non-clinical and clinical stages of research.
Disclaimer:
The information provided in this article does not constitute legal advice. Cencora, Inc., strongly encourages readers to review available information related to the topics discussed and to rely on their own experience and expertise in making decisions related thereto.
Ta kontakt med teamet vårt
Sources
1. ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop. https://www.amstat.org/meetings/asa-biopharmaceutical-section-regulatory-industry-statistics-workshop
2. Artificial intelligence and medical products: How CBER, CDER, CDRH and OCP are working together, FDA. OMP CDER AI Discussion Paper
3. Joint Statistical Meetings 2025, Nashville, TN, 2-7 August 2025. https://ww2.amstat.org/meetings/jsm/2025/index.cfm
4. ENAR 2026 Spring Meeting, March 15-18, Indianapolis, IN. ENAR 2026 Spring Meeting: Meetings - ENAR <cfoutput>2026</cfoutput> Spring Meeting
Cencora.com tilbyr automatiserte oversettelser for å hjelpe deg med å lese nettstedet på andre språk enn engelsk. Mye arbeid er lagt ned i disse oversettelsene for å gjøre dem nøyaktige, men ingen automatisert oversettelse er perfekt, og slike oversettelser er heller ikke ment å erstatte menneskelige oversettere. Disse oversettelsene leveres som en tjeneste til brukere av Cencora.com og leveres «som de er». Det gis ingen garanti av noe slag, verken uttrykt eller underforstått, med hensyn til nøyaktigheten, påliteligheten eller riktigheten av noen av disse oversettelsene som er gjort fra engelsk til andre språk. Det kan hende at noen typer innhold (som bilder, videoer, Flash osv.) er unøyaktig oversatt på grunn av begrensningene i oversettelsesprogramvaren.
Eventuelle avvik eller forskjeller som oppstår ved oversettelse av dette innholdet fra engelsk til et annet språk, er ikke bindende og har ingen juridisk virkning for samsvar, håndhevelse eller andre formål. Kontakt oss dersom du oppdager feil. Se den engelske versjonen av siden dersom du er i tvil om hvorvidt informasjonen i disse oversettelsene er nøyaktig.
